

Content **Experiment System** Flow pattern Heat Transfer Characteristic Conclusion

Overall design

Dark blue lines: liquid nitrogen precool lines

Red lines: nitrogen gas lines Green: mixed venting gas lines

Blue lines: liquid nitrogen transport lines

Black lines: air lines

Brown circles: apparatus improvement

Electric heating

Pool subcooler

Pressure and temperature is measured at same location

Pool subcooler

Uncertainty: P=+/-0.375PSI, T=+/-0.8K

Pool subcooler

Pressure [PSIA]	Temperature [K]	Re
49.4	87.4+/-1	20100
71.3	87.2+/-5	38700
98.9	86.1+/-6	78600

Flow visualization

Vertical upward flow

Quench front 1, t=0

Pure liquid

Quench front 2, t=0.42s

Droplet

Flow pattern development Re=1550

Flow visualization

Vertical upward flow

Quench front 1, t=0

Pure liquid

Quench front 2, t=0.80s

Droplet

Flow pattern development, Re=10100

Flow visualization

Vertical upward flow

Quench front 1, t=0

Pure liquid, high turbulence

Quench front 2, t=0.30s

Turbulence inverted annular

flow 6032

Flow pattern development, Re=36032

Temperature and heat flux

 Temperature and heat flux curve for

$$\theta = 0^{\circ}$$

 With increasing Re number, the gravity effect is vanishing

Temperature and heat flux

 Temperature and heat flux curve for

$$\theta = 90^{\circ}$$

 The three thermocouples have identical readings

Critical heat flux

Leidenfrost temperature

Conclusion

- A stable experiment system is built for liquid nitrogen pipe chilldown experiment covering all orientations, Reynolds number from 2000 to 13000 and pressure ranging from 100 to 700KPa
- The orientations effect will eliminated by increasing Re.
- In low and medium Re, CHF is heavily depend on the Re. When Re is high enough, CHF is independent from Re.
- Leidenfrost temperature is always a function of Re.

